Personal Guided Inquiry:

Naming Chemical Compounds and Writing Formulas

As you work through the <u>online videos</u>, make notes of important ideas and practice what you are learning. These skills are some of the most important you will learn this semester. You will use these naming and formula writing skills everyday in Chemistry.

These videos will be available all semester. You are always welcome to come back and review later, as you need it. The best part about these videos is that you can pause them, rewind, and listen again if you aren't sure about something you hear. If you want more practice, go back and try the videos again. Or use the practice examples here in this worksheet.

Always use your naming guide that we have colored together in class. This will serve as a helpful tool all semester long!

Video 1: Introduction to Chemical Nomenclature

After watching this video, complete part 1 of CHECKPOINT 1.

Video 2: Naming Category 1 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 1 compounds in the first section.

Video 3: Writing formulas for Category 1 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 1 compounds in the second section.

Video 4: Naming Category 2 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 2 compounds in the first section.

Video 5: Writing formulas for Category 2 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 2 compounds in the second section.

Video 6: Naming Category 3 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 3 compounds in the first section.

Video 7: Writing formulas for Category 3 compounds

After watching this video, complete part 2 of CHECKPOINT 1, for all of the Category 3 compounds in the second section. This should complete all of CHECKPOINT 1.

Video 8: Working with polyatomic ions

After watching this video, complete CHECKPOINT 2.

Video 9: Naming and writing formulas for acids

After watching this video, complete CHECKPOINT 3.

After watching all 9 videos, and working through CHECKPOINTS 1-3, complete CHECKPOINTS 4 and 5 to pull all of these new skills together. Feel free to work with other students and ask questions when you need help. Keys will be posted on Blackboard so that you can check your work.

CHECKPOINT 1: Naming and Formula Writing, part 1

Complete this CHECKPOINT in parts. **Part 1:** Name the category for each compound (formula or name) given in this CHECKPOINT. Write a 1, 2, 3 under the "Category" column. **Part 2:** As you learn how to write names and formulas for different categories, fill in the missing information under the "Name" or "Formula" column. **By the end of video 7**, you should have all of your answers for this CHECKPOINT.

	Compound formula	Category	Name
1.	KCI		
2.	Cs ₂ S		
3.	MgBr ₂		
4.	CrN		
5.	NiCl ₂		
6.	Au ₂ O		
7.	Mn ₃ P ₂		
8.	ZrS ₂		
9.	NO		
10.	C_2H_8		
11.	SCI ₄		
12.	ZnO		
13.	CaF ₂		
14.	FeBr ₂		
15.	MnI ₄		
16.	SiF ₃		
17.	Cu ₂ S		

18. Ag₃P

Compound name

- 19. Barium oxide
- 20. Potassium iodide
- 21. Sodium nitride
- 22. Strontium phosphide
- 23. Cadmium chloride
- 24. Vanadium (V) fluoride
- 25. Cobalt (III) nitride
- 26. Copper (I) sulfide
- 27. Manganese (II) oxide
- 28. Phosphorus dibromide
- 29. Trinitrogen pentasulfide
- 30. Monoiodine dichloride
- 31. Dihydrogen pentacarbide
- 32. Mercury (II) sulfide
- 33. Magnesium phosphide
- 34. Iron (III) iodide
- 35. Cuprous chloride
- 36. Triselenium tetroxide
- 37. Chromium (III) sulfide
- 38. Rubidium fluoride
- 39. Nickel (II) chloride

Working with chemical formulas and names that include Polyatomic Ions (PAIs)

Polyatomic Ions		
NH_4^+	Ammonium	
BrO_3^-	Bromate	
CN^{-}	Cyanide	
$\mathrm{C_2H_3O_2^-}$	Agotata	
$(CH_{3}COO^{-})$	Atetate	
ClO_4^-	Perchlorate	
ClO_3^-	Chlorate	
ClO_2^-	Chlorite	
ClO-	Hypochlorite	
$\mathrm{IO}_{\mathfrak{z}}^{-}$	Iodate	
${ m MnO_4^-}$	Permanganate	
NO_3^-	Nitrate	
NO_2^-	Nitrite	
OH⁻	Hydroxide	
HCO_3^-	Hydrogen carbonate	
HSO_4^-	Hydrogen sulfate	
SCN^-	Thiocyanate	
CO_3^{2-}	Carbonate	
$\mathrm{Cr}_{2}\mathrm{O}_{7}^{2-}$	Dichromate	
CrO_4^{2-}	Chromate	
SO_4^{2-}	Sulfate	
SO_3^{2-}	Sulfite	
PO_4^{3-}	Phosphate	

Polyatomic ions (PAIs)

<u>Acet</u> ate	$C_2H_3O_2^{-1}$	<u>Thiocyan</u> ate	SCN ⁻
<u>Brom</u> ate	BrO ₃ ⁻	<u>Cyan</u> ide	CN ⁻
<u>Carbon</u> ate	CO3 ²⁻	Peroxide	O ₂ ²⁻
<u>Chlor</u> ate	ClO₃ ⁻	Azide	N_3^-
<u>Chrom</u> ate	CrO ₄ ²⁻	Hydroxide	OH [.]
<u>lod</u> ate	1O ₃ -	Ammonium	NH_4^+
<u>Mangan</u> ate	MnO₃ ⁻	Hydronium	H₃O⁺
<u>Nitr</u> ate	NO ₃ ⁻		
Phosphate* PO4³⁻			
Sulfate*	SO 4 ²⁻		
* The root for phosphate is <u>phosphor</u> - and the root for sulfate is <u>sulfur</u> -			

More with polyatomic ions (PAIs)

Prefix or suffix	Number of oxygens	Example PAI		Example compound	
ate	original, from list	<u>chlor</u> ate	ClO₃⁻	HClO₃	chloric acid
perate	original +1	per <u>chlor</u> ate	ClO4_	NaClO ₄	sodium perchlorate
ite	original –1	<u>chlor</u> ite	ClO₂ [−]	Ca(ClO ₂) ₂	calcium chlorite
hypoite	original – 2	hypo <u>chlor</u> ite	CIO-	HCIO	hypochlorous acid

CHECKPOINT 2: Using Polyatomic Ions (PAIs)

Part 1: In the following chart, circle all the polyatomic ions. Then, write the name of each polyatomic ion you circled. If a box contains no PAIs, write a note to the side explaining why it is not a polyatomic ion.

CO ₂	OH-1	Cl ₂	ClO ₃ -1	CO ₃ -2
CN-1	SO ₄	H ₂ SO ₄	HSO4 ⁻¹	Fe(OH)₃
C ₂ H ₃ O ₂ ⁻¹	NH_4^{+1}	NO3 ⁻¹	PO ₄ -3	NH₄Cl

Part 2: Name the category for each compound given in this CHECKPOINT. Write a 1, 2, 3 under the "Category" column. Then, fill in the missing piece of information in the "Name or Formula" column.

Compound

Category

Name or Formula

- 1. KOH
- 2. Iron (III) phosphate
- 3. Zinc chlorate
- 4. MgCO₃
- 5. Cu(NO₃)₂
- 6. CO₃
- 7. Aluminum acetate
- 8. Chromium (III) sulfate
- 9. Calcium hydroxide
- 10. Na₂SO₄
- 11. (NH₄)₂CO₃
- 12. Ammonium hydroxide

(Add Acids Help Guide Here)

CHECKPOINT 3: Naming and Writing Formulas for Acids

Complete this CHECKPOINT in parts. **Part 1:** Read through the given list of compounds in this CHECKPOINT and circle anything that is NOT an acid. Write "Not an acid" in the "Name or Formula" column. **Part 2:** Fill in the missing information under the "Name or Formula" column.

Compound	Name or Formula

- 1. $HCIO_3$
- 2. H₂CO₃
- 3. HNO₃
- 4. HBr
- 5. $NH_4C_2H_3O_2$
- 6. Sulfuric acid
- 7. Phosphoric acid
- 8. Sulfur hexafluoride
- 9. Acetic acid
- 10. Hydrochloric acid
- 11. HBrO₃
- 12. Hydrocyanic acid
- 13. H₃P
- 14. HMnO₄
- 15. Hydroiodic acid

CHECKPOINT 4: Naming and Formula Writing, part 2

This CHECKPOINT mixes up all 3 categories of compounds, as well as Complete this CHECKPOINT in parts. **Part 1:** Read through the given list of compounds in this CHECKPOINT and circle all of the polyatomic ions (names or formulas) you recognize. Use your polyatomic ion list for help. **Part 2:** Read through the compounds and draw a box around all of the acids. Write "acid" for each of these in the "Category" column. **Part 3:** For each compound, write which category (1, 2, or 3) it fits into, and fill in the missing information under the "Name or Formula" column. **By the end of video 9**, you should have all of your answers for this CHECKPOINT.

Compound

Category

Name or Formula

- 1. Ammonium chloride
- 2. SiO₂
- 3. Cadmium sulfate
- 4. Cobalt (III) phosphide
- 5. ZnNO₃
- 6. HBrO₄
- 7. SeF₆
- 8. Cr₂O₃
- 9. Barium hydroxide
- 10. Chloric acid
- 11. Copper (II) bromide
- 12. SrF_2
- 13. Silver carbonate
- 14. Carbonic acid
- 15. H_2CO_3
- 16. Nickel (II) nitrate
- 17. $HC_2H_3O_2$
- 18. F_3Br_5
- 19. Ammonium phosphate

CHECKPOINT 5: Putting it all together!

When atoms and ions form compounds, they form bonds made of energy that hold them together. Depending on the type of atoms, special types of bonds will form. Two of these types of bonds are ionic bonds and covalent bonds.

Ionic bonds form between metals and nonmetals. These bonds form when atoms or ions exchange electrons from one to another. Polyatomic ions also form ionic bonds.

(Category ____ and ____ compounds)

Covalent bonds form between nonmetals and other nonmetals. These bonds form when atoms share electrons without actually giving them away.

(Category ____ compounds)

Acids form ionic bonds, but behave in a very special way. So, we will say that acids form "acidic" bonds.

Categorize each of the compounds below according to the type of bonds they contain. For each, write ionic, covalent, or acidic.

- 1. Sulfur dioxide
- 2. Manganese (IV) fluoride
- 3. Li₃PO₄
- 4. Zinc chlorate
- 5. HNO₃
- 6. PF₃
- 7. Ca(OH)₂
- 8. Aluminum nitrate
- 9. Ba₃N₂
- 10. H_2SO_4
- 11. Carbon tetrahydride